

タクシーを活用した新たな交通モード導入に向けた実証事業

バタクス - Vehicle of Advanced Tariff And Connection System-

令和3年5月27日(木)

高松市の進めるまちづくり

「コンパクト・プラス・ネットワーク」の考えの下、鉄道を基軸としたバス路線の再編により、持続可能な公共交通ネットワークを再構築し、集約されたまちを公共交通で繋ぐ。

交通結節拠点

- 既存ストックを活用
- 鉄道を基軸としたバス路線の再編を行え、 まちづくりに寄与するものとなるよう検討・ 整備する。

バス路線再編

▶ 既存路線のスクラップと新規路線のビルドを、パッケージにより一体的に行う。

サービス水準

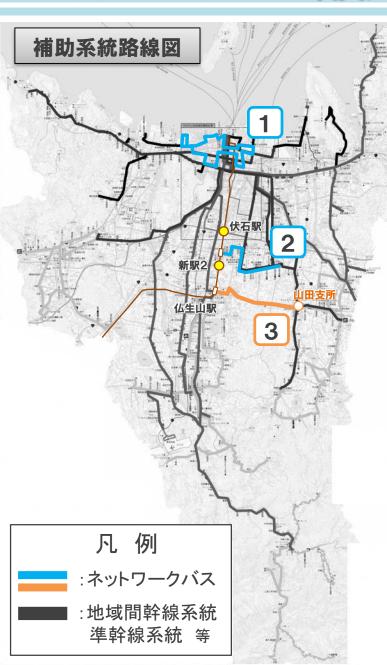
再編により発生する、鉄道とバスとの乗継ぎを促進するため運賃や時間的抵抗を軽減し、再編後においても、サービス水準を維持する。

各視点において、持続可能なモデルとして の実行性を高めるため、行政と事業者が 連携して計画・施策展開する。

既存ストックとICカードを活用し、ハード・ソフト両面からの施策により持続性の高い公共交通に変えつつ、一定のサービス水準を維持しながら、

需要に合わせた供給の最適化を行う

市域全体の移動示ザイン


バス路線再編の特徴

● 需要に応じたモードの選択

カテゴリー	幹線	空白地域	
主体	行政、事業者	地域	
再編の考え方	 郊外から中心部へのバス路線を、 鉄道を基軸としたフィーダー化 (既存バスの再編) 交通結節拠点と拠点間を繋ぐア クセスの確保 中心部の回遊性向上 	④ 公共交通空白地域から交通結節拠点へのアクセス確保	セーフティネットと して福祉施策に よる移動支援
スキーム	地域間幹線系統(国、県、市補助)準幹線系統(県、市補助)ネットワークバス(市補助)	● コミュニティバス(市補助)	● 福祉輸送
モード	新交通システム (LRT、BRT等) 路線バス-	コミュニティバス ジャンボタクシー	自家用車等-

▶ 国、県主体の補助と、市主体の補助の間を埋める、中間の制度

ネットワークバスの概要

ネットワークバス

国・県の補助スキームに乗らないが、 市として必要な幹線系統として支える 補助スキーム

- 供給の最適化
- バスのフィーダー化(バス路線再編)を支える重要なスキーム

1

中心部

まちなかループバス(H27.10~)

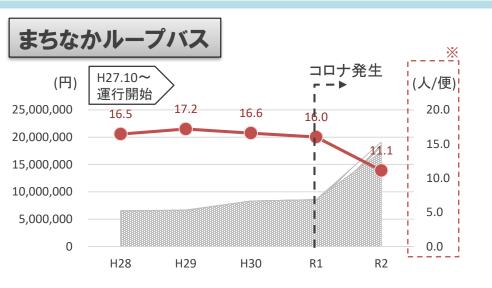
中心部の病院等、主要目的施設を繋ぎ、回遊性向上に寄与する、循環系バス

2

市街地エリア の縁辺部

太田駅サンメッセ線(H24.4~)

交通結節拠点と学術拠点とを繋ぐ フィーダーバス

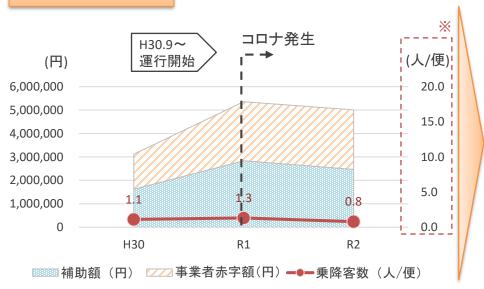

3

郊外部

仏生山川島線(H30.9~)

交通結節拠点と郊外拠点を繋ぐ フィーダーバス

ネットワークバスの状況


■■■補助額(円) ℤℤℤ事業者赤字額(円) ━●━乗降客数(人/便)

太田駅サンメッセ線 コロナ発生 H24.4~ (人/便) (円) 運行開始 25,000,000 20.0 20,000,000 15.0 15,000,000 7.12 10.0 6.8 6.2 6.0 10,000,000 5.0 5,000,000 0.0 H28 H29 R1 R2 H30

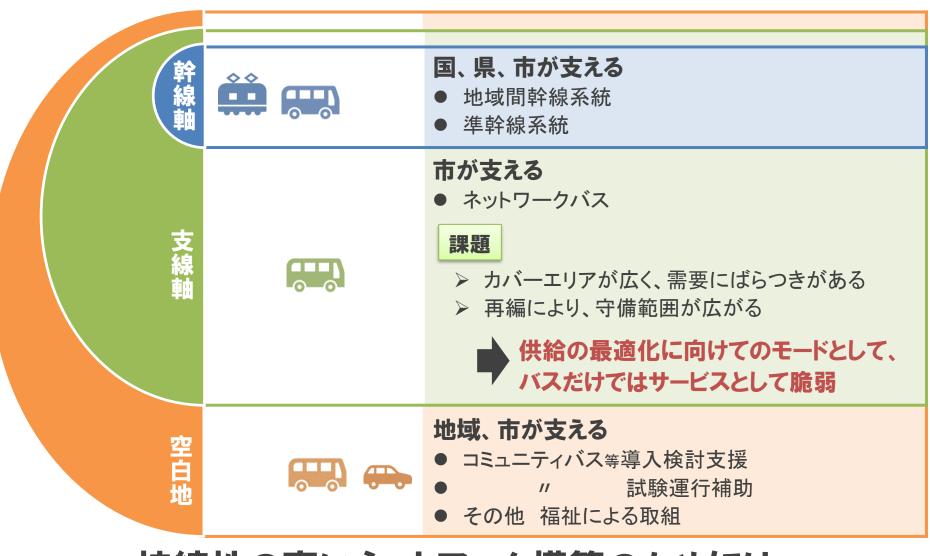
■■■ 補助額(円) ☑☑ 事業者赤字額(円) ━● 乗降客数 (人/便)

※1便当たりの人数の範囲を揃えている

仏生山川島線

利用者数

運行開始以降、じわじわ伸びていた が、コロナで大きなダメージ


事業者赤字

欠損額の負担割合が5割と、 他ネットワークバスより大きい

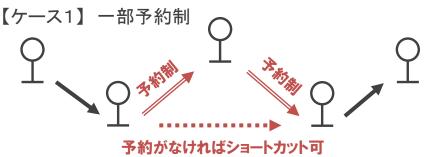
高松モデルの考えの下、 需要に合わせたモードに変更 したいが・・・

支え方の体系

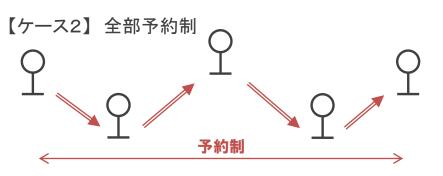
持続性の高いネットワーク構築のためには 新モードの導入が急務

新モード導入の日本でのここ数年のトレンド(穴埋めのモード)

路線定期型交通


- 予め定められた路線を、定められた時刻で運行
- 利用者は運行ルート上に設置された停留所で乗降

デマンド型交通


- 予約があった時のみ運行
- 運行方式、ダイヤ、発着地の自由な組み合わせにより、多様な運行形態が存在

路線不定期運行

- ▶ 路線を定め、所定の停留所で乗降する。
- ▶ 予約があった場合のみ運行し、予約がなければ運行しない。(起点又は終点に係る時刻の設定が不定)

(ショートカット路線の認可が必要)

区域運行

- ▶ 路線を定めず、指定エリア内において旅客の需要に応じた乗合運送を行う。
- ▶ 予約に応じ、ドア to ドアに近い運行となる。
- ▶ エリア毎に所定の停留所が設けられたものや、完全フリー乗降のものまで様々な運行形態がある。
- ▶ 近年、AI配車アプリを活用した運行形態が見られる。

※指定エリアの設定は、原則地区単位(大字、町丁目等)だが、 地域の実情により、隣接する複数の地区をエリアに設定可能。

デマンド型交通の運送法上の課題

モード		乗合タクシー	タクシー
道路運送 法上の種 類	一般 乗合 旅客自動車運送事業 (第3条第1号イ) ● 自動車を使用して 乗合いの旅客 を運送		一般乗用旅客自動車運送事業 (第3条第1項ハ)● 1個の契約により11人未満の自動車を貸し 切って旅客を運送
事業者と利用者の契約関係	● 料金があらかじめ設定されている		1 対 複数 でグループ契約 ○複数で乗り、最後の人が清算 ※複数で乗り、個別で精算 → 製料・ 利用者3人 1個の契約
運賃設定	● 地域公共交通会議において運賃等の協議● 合意すれば届出 (第9条第4項)		事業者が運賃を定め、認可を受ける (法第9条の3第1,3項)
課題	乗り合わせ可能だが・・・		乗り合わせることが不可能
	> 関係者との調整が必要		
	運行経費	運行事業者は 運行形態に見合った 雇用の確保 が必要 ⇒ 支出が高くなる傾向	
	運賃	受益者負担が安価 ⇒ 収入は安くなる傾向	8

考察及び仮説

デマンド型交通(乗合)の問題点

- サービスはデマンド型だが、経費は非デマンド型
 - 利用者**1人当たりの運行経費は平均でみると高い**水準
 - 運行範囲拡大による行政負担の増加
 - ▶ 予約時だけの運行とはいえ、運転手は1日中押さえており、人件費も1日分かかる
 - ▶ 予約を捌くオペレーション費用が発生

コストが高く、バス事業をやるのと変わらない 場合によってはタクシーチケットを配布したほうが安いケースが多い

■ サービスに見合わない価格 & 役割分担の不明瞭さ

● 公共交通であることを理由にした、**運賃の低廉化により**、 **競合するバスやタクシー等の利用が減少**

全国的に導入している事例においても、

需要に合わせたモードになっておらず、持続性に疑問

仮説

タクシー事業としてフレキシブルなサービスが必要

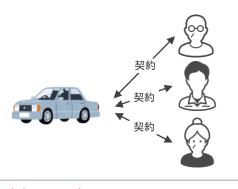
仮説からのモードの提案イメージ

高松市の 優位性 市域全体の移動デザインをする中で、 モードの役割分担について 利害関係者の合意が終わっている

モード間でサービスが バッティングしない

モード 道路運 送法

タクシー事業 変動運賃+相乗り 派生からの


- (今はない)

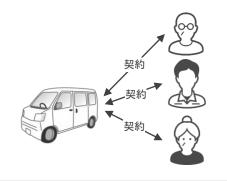
同じ方向へ移動したい人同士が マッチングされ、同じ車両に乗車す ることで、距離に応じて運賃を按分

事業者 と利用 者の契 約関係

1回の運送で1人1人と契約

● 料金は距離等によって設定

運賃設定


- (今はない)

乗合タクシー

- 一般**乗合**旅客自動車運送事業 (第3条第1号イ)
- 自動車を使用して**乗合いの旅客**を 運送

乗り合わせ=1人1人と契約

● 料金があらかじめ設定されている

- 地域公共交通会議において協議
- 合意すれば届出 (第9条第4項)

タクシー

- 一般**乗用**旅客自動車運送事業 (第3条第1項ハ)
 - 1個の契約により11人未満の自 動車を貸し切って旅客を運送

1回の運送につき**1つの契約**

- 複数で乗り、最後の人が清算
- × 複数で乗り、個別で精算

事業者が運賃を定め、認可を受ける (法第9条の3第1,3項)

タクシーにおけるダイナミックプライシングと 相乗りを併用したサービスの提案

10

SC選定事業者の提案内容

	電脳交通	未来シェア	高松タクシー協会
位置付け	ベンダー	ベンダー	プレイヤー
会社概要	タクシー会社経営から見えた業界全体の課題解決のためタクシーのDXを推進するベンチャー企業。タクシー配車システム開発・提供、タクシー会社の配車業務受託運営サービスなど事業者向けビジネスを展開。	公共交通が抱える課題を解決するため立ち上がった、AI研究の第一人者による、公立はこだて未来大学発のスタートアップ。 AIを活用したリアルタイムオンデマンド型運行システム等を提供。	事業者数 35社 車両数 829両 営業区域 高松市(島しょ 部を除く)
提案	タクシー配車指令拠点を構築し、配車オペレーションをとりまとめる タクシー事業者の業務効率化オンデマンド型交通や新サービスの施行	都市レベルの全体最適交通・移動とサービスの連携▶ あらゆる車両の走行の効率化▶ 移動を伴う新たなサービスの創出と質の向上	移動問題解決の 受け皿となる ⇒相乗りの運行
ソリューション	■ クラウド型配車システム ■ 配車オペレーション 出典) 電脳交通HP https://cybertransporters.com/	SAVS (Smart Access Vehicle Service)システム ***********************************	_
主な規	● タクシーによる相乗り規制の解禁		

制·制度 改革

- による怕来り尻削の胜景
- タクシーの需給や指定区間、乗合区間に応じた柔軟なプライシング など

【規制・制度改革ではないが、取組実施にあたり協力が必要なもの】

- ▶ タクシー事業者間における顧客融通への協力
- ▶ タクシー事業者の自社配車ルールを一部共通化することへの理解

【提案】デマンド交通による仮説の実証

実証実験概要

仏生山川島線において、路線不定期型のデマンド運行

モード	タクシー	
運行形態	デマンド型交通【路線不定期運行予定】 固定ルート・バス停を想定、予約時に稼働	
運行主体	ことでんタクシー 等	
配車オペレーション システム	電脳交通	
運行日数	120日 ※2021.10.1~2022.3.31(土・日・祝日及び12/29~1/3は運休)	
車両台数	2台	
運転手拘束時間	11時間 ※現行の仏生山川島線の拘束時間とほぼ同等 ・山田支所→みんなの病院 7:25→18:23 ・みんなの病院→山田支所 7:52→18:54	

【提案】デマンド交通による仮説の実証

実証実験の中で洗い出す課題

運送法上の問題点

規制改革

「事業者、国との調整」

特区認定における、

- 相乗り(道路運送法第3条)
- ダイナミックプライシング(同法第9条の3) のエビデンスの収集

低コストなソリューション

配車アプリ

[ベンダーとのチャレンジ]

- 相乗りの効果検証
- 段階的・弾力的な運賃の設定

地域モデルの構築

地域での制度設計

[行政としての支え方]

ビジネスモデルをサポートする仕組みの構築

- 運賃設定 (時間帯、エリア別、乗り継ぎ発生、 相乗り発生 による変動運賃
- 行政としてサポートする制度
- 合同会社設立等の運営体制の構築

目指すアウトプット

タクシーにおける変動運賃と相乗りを併用した新モードの創出

(規制改革 +ソリューションの提案)

プレイヤー

タクシー協会

新たなビジネスモデルの創出

Win-Win-Win

持続可能なモードの創出

ベンダー

配車アプリ等 供給者

▶ 新たな商品の創出

サービスの質に応じた 適切な価格変動

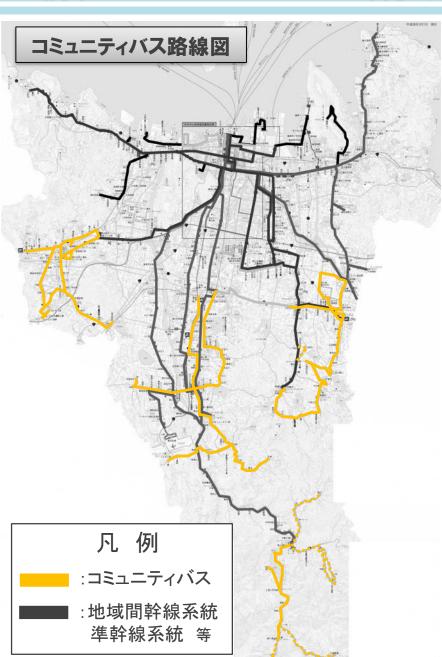
市民 高松市

持続可能な 移動の供給

目指すべき未来

行政が全て支えるモデルから、官民連携による持続可能なモデルへ

● 現行タクシー事業の延長で、 ビジネスモデルを創出


需要に見合った運行経費

受益者負担の適正化

期待されるアウトカム(行政)

配車アプリ

新モードでの運行が可能なツールの完成

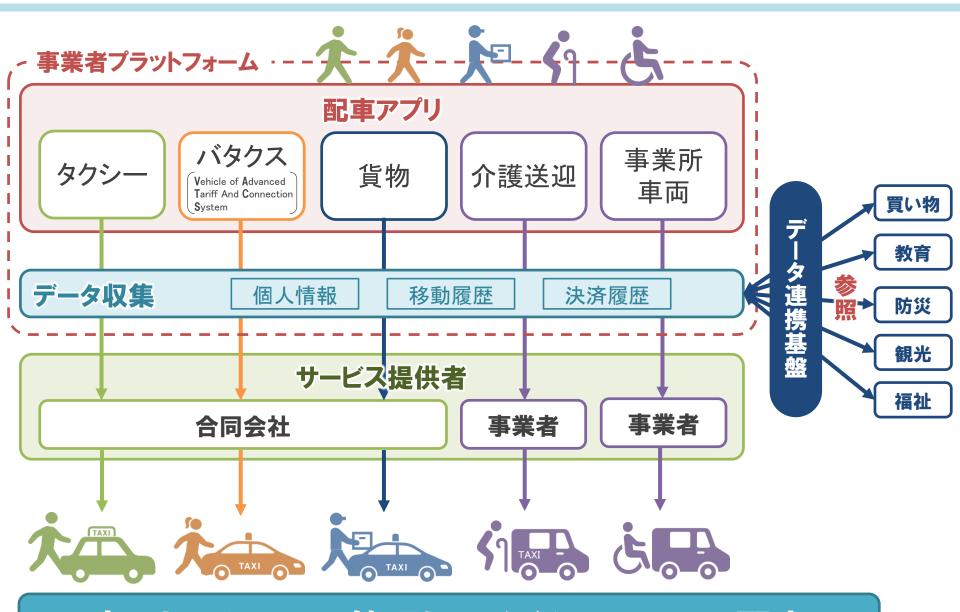
- オペレーションのシェアが可能なツール
- 弾力的な運賃設定ツール

コミバスの供給の最適化 ~現行コミバスのスクラップ&ビルド~

コミバス導入地域において、

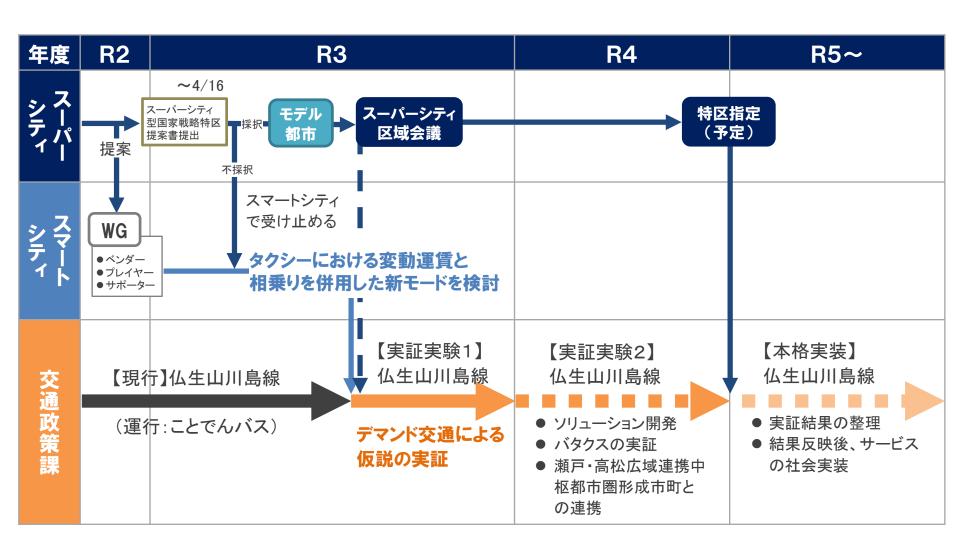
乗合いと相乗りの選択が可能に

乗合い


地域による利用者の確保

相乗り

利用者による、サービスに対する適正な運賃の負担


持続性向上

期待されるアウトカム

既存ストックを一元管理し、デジタルツインな配車へ

スケジュール及び財源

